Learning obstacle siswa dalam materi statistika terkait dengan kemampuan computational thinking

Student’s learning obstacles in statistics materials related to computational thinking skills

  • Kintan Tyara Augie Universitas Pendidikan Indonesia
  • Siti Fatimah Universitas Pendidikan Indonesia
  • Sufyani Prabawanto Universitas Pendidikan Indonesia
Keywords: learning obstacle, computational thinking, statistika

Abstract

Masuknya kemampuan computational thinking ke dalam penilaian PISA menjadi tantangan baru bagi siswa Indonesia. Salah satu kemampuan yang berperan penting dalam proses pemecahan masalah ini belum banyak diterapkan oleh siswa akibat adanya learning obstacle. Penelitian ini adalah penelitian kualitatif dengan pendekatan fenomenologi untuk mengidentifikasi learning obstacle siswa sekolah menengah pertama pada materi statistika terkait dengan kemampuan computational thinking. Instrumen penelitian yang digunakan yaitu soal tes kemampuan computational thinking dan pedoman wawancara. Data yang diperoleh dari hasil tes 17 orang siswa salah satu sekolah menengah pertama di Kabupaten Garut, dianalisis melalui tahapan reduksi data, penyajian data hingga penarikan kesimpulan. Hasil penelitian menunjukkan bahwa siswa mengalami ketiga jenis learning obstacle dalam materi statistika yang terkait dengan kemampuan computational thinking.

Downloads

Download data is not yet available.

Author Biographies

Kintan Tyara Augie, Universitas Pendidikan Indonesia

Jl. Dr. Setiabudhi No. 229 Bandung 40154, Jawa Barat, Indonesia

Siti Fatimah, Universitas Pendidikan Indonesia

Jl. Dr. Setiabudhi No. 229 Bandung 40154, Jawa Barat, Indonesia

Sufyani Prabawanto, Universitas Pendidikan Indonesia

Jl. Dr. Setiabudhi No. 229 Bandung 40154, Jawa Barat, Indonesia

References

Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges. Computers in Human Behavior, 105, 106185. https://doi.org/https://doi.org/10.1016/j.chb.2019.106185

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Educational Technology and Society, 19(3), 47–57.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905

Brousseau, G. (2002). Theory of Didactical Situations in Math- ematics. Kluwer Academic Publishers.

Dewi, D. K., Khodijah, S. S., & Zanthy, L. S. (2020). Analisis Kesulitan Matematik Siswa SMP pada Materi Statistika. Jurnal Cendekia : Jurnal Pendidikan Matematika, 4(1), 1–7. https://doi.org/10.31004/cendekia.v4i1.148

Fauji, T., Sampoerna, P. D., & Hakim, L. El. (2022). Penilaian Berpikir Komputasi Sebagai Kecakapan Baru dalam Literasi Matematik. Prosiding Seminar Nasional Fakultas Tarbiyah Dan Keguruan Universitas Negeri Alauddin Makasar, 598–514.

Hariyomurti, B., Prabawanto, S., & Jupri, A. (2020). Learning Obstacle Siswa dalam Pembelajaran Barisan dan Deret Aritmetika. Juring (Journal for Research in Mathematicas Learning), 3(3), 283–292.

Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007). Computational Thinking. SIGCSE Bull., 39(1), 195–196. https://doi.org/10.1145/1227504.1227378

Maarif, S., Perbowo, K. S., Noto, M. S., & Harisman, Y. (2019). Obstacles in Constructing Geometrical Proofs of Mathematics-Teacher-Students Based on Boero’s Proving Model. Journal of Physics: Conference Series, 1315(1), 12043. https://doi.org/10.1088/1742-6596/1315/1/012043

Mohaghegh, M., & McCauley, M. (2016). Computational Thinking: The Skill Set of the 21st Century. International Journal of Computer Science and Information Technologies, 7(3), 1524–1530.

OECD. (2019). Programme for International Student Assessment (PISA) Results from PISA 2018. In OECD Publishing. https://doi.org/10.1007/978-94-6209-497-0_69

OECD, O. for E. C. and D. (2021). OECD member countries and Associates decided to postpone the PISA 2021 assessment to 2022 to reflect post-Covid difficulties. This draft vision was created before the crisis. The final version will reflect the new name of the cycle “PISA 2022.” 95.

Rahmah, B. N., & Maarif, S. (2021). Analisis Epistimologi Obstacles Terhadap Siswa Smp Kelas Vii Dengan Materi Statistika (Penyajian Data). Jurnal Matematika UNAND, 10(4), 510. https://doi.org/10.25077/jmu.10.4.510-518.2021

Rahman, H. (2017). Analisis Learning Obstacles yang Dialami Siswa pada Materi Penyajian Data Berdasarkan Perspektif Standar Tes PISA Konten Uncertainty and Data (Universitas Pendidikan Indonesia). Retrieved from http://repository.upi.edu/id/eprint/32262%0Ahttp://repository.upi.edu/32262/10/T_MTK_1502470_Bibliography.pdf

Rosali, D. F. (2022). Learning Obstacles Siswa SMP dalam Berpikir Komputasi pada Materi Pola Bilangan (Universitas Pendidikan Indonesia). Retrieved from http://repository.upi.edu/71191/

Sudrajat. (2008). Ilmu Pengetahuan dan Teknologi. “The Power of Mathematics for All Aplications,” 1–12.

Sumarni, & Adiastuty, N. (2015). Perbandingan Pemahaman Matematis Antara Siswa Yang Memperoleh Pembelajaran Metode Discovery Dan Metode Advance organizer. Euclid, Vol. 2, pp. 226–237.

Sumarni, Darhim, & Fatimah, S. (2021). Kemampuan pemecahan masalah mahasiswa calon guru matematika sekolah menengah berdasarkan tahapan polya. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(3), 1396–1411.

Sumarni, S., Darhim, D., Fatimah, S., Priatna, N., Anjelita, A., & Taufik, A. (2018). The students’ mathematical concept understanding ability through cooperative learning type jigsaw assisted visual media. Journal of Physics: Conference Series, 1132(1). https://doi.org/10.1088/1742-6596/1132/1/012051

Supiarmo, G., Turmudi, T., & Susanti, E. (2021). Proses Berpikir Komputasional Siswa Dalam Menyelesaikan Soal Pisa Konten Change and Relationship Berdasarkan Self-Regulated Learning. Numeracy, 8(1), 58–72. https://doi.org/10.46244/numeracy.v8i1.1378

Suryadi, D. (2011). Didactical Design Research (DDR) dalam Pengembangan Pembelajaran Matematika. Joint-Conference UPI-UTiM. (April).

Tsao, Y.-L. (2006). Teaching Statistics With Constructivist-Based Learning Method To Describe Student Attitudes Toward Statistics. Journal of College Teaching & Learning (TLC), 3(4), 59–64. https://doi.org/10.19030/tlc.v3i4.1728

Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25, 127–147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, Vol. 49, pp. 33–35. https://doi.org/10.1145/1118178.1118215

Yusuf, Y., Titat, N., & Yuliawati, T. (2017). Analisis Hambatan Belajar (Learning Obstacle) Siswa SMP Pada Materi Statistika. Aksioma, 8(1), 76. https://doi.org/10.26877/aks.v8i1.1509

Published
2023-05-24
How to Cite
Augie, K. T., Fatimah, S., & Prabawanto, S. (2023). Learning obstacle siswa dalam materi statistika terkait dengan kemampuan computational thinking. Math Didactic: Jurnal Pendidikan Matematika, 9(2), 213-224. https://doi.org/10.33654/math.v9i2.2103
Abstract viewed = 330 times
PDF (Bahasa Indonesia) downloaded = 344 times