Profil pemecahan masalah siswa SMP dalam menyelesaikan soal TIMSS konten aljabar berdasarkan pemecahan masalah IDEAL

The profile of junior high school students’ problem solving in answering the content TIMSS test of algebra on ideal problem solving

  • Maria Krissanti Universitas Kristen Satya Wacana
  • Tri Nova Hasti Yunianta Universitas Kristen Satya Wacana
Keywords: IDEAL problem solving, TIMSS mathematical problem, algebra

Abstract

This research aims to determine the profile of students' problem solving in solving TIMSS algebraic content based on IDEAL problem solving (I-Identify problems, D-Define goals, E-Explore possible strategies, A-Anticipate outcomes and actions, and L-Look back and learn ) in class VIII students at Christian Middle School 2 Salatiga. This research is a qualitative research. There are 3 multiple choice questions TIMSS algebra content with the topic of patterns, forms of algebra, as well as equations and functions. The selection of subjects in this study using purposive sampling obtained as many as 3 subjects. Data collection techniques used were tests, interviews, and documentation. Analysis of the data used is the IDEAL problem solving indicator Based on the results of tests and interviews, it shows that some subjects have been able to carry out the stages of problem solving appropriately and coherently, but some subjects are also lacking in the Explore possible strategies and Look back and learn stages.

Downloads

Download data is not yet available.

References

Annizar, A. M. (2015). Analisis Kemampuan Pemecahan Masalah Soal PISA Menggunakan Model IDEAL Pada Siswa Usia 15 Tahun di SMA Nuris Jember. Universitas Jember. Diakses Tanggal 26 Juli 2019 Dari Http://Repository.Unej.Ac.Id/Handle/123456789/73118.

Bransford, J. D., & Stein, B. S. (1984). The ideal problem solver : a guide for improving thinking, learning, and creativity (2nd ed.). New York: W.H Freeman.

Cahyono, B., & Adilah, N. (2016). Analisis Soal Dalam Buku Siswa Matematika Kurikulum 2013 Kelas VIII Semester I Berdasarkan Dimensi Kognitif Dari TIMSS. JRPM (Jurnal Review Pembelajaran Matematika, 1(1), 86–98.

Dahar, R. W. (1989). Teori-teori belajar. Jakarta: Penerbit Erlangga.

Damayanti, E. R., & Yunianta, T. N. H. (2018). The Profile Of Junior High School Students’problem Solving In Answering The Content Pisa Test Of Uncertainty And Data Based On Ideal Problem Solving. MaPan: Jurnal Matematika Dan Pembelajaran, 6(2), 250–264.

Nayazik, A. (2017). Pembentukan Keterampilan Pemecahan Masalah melalui Model IDEAL Problem Solving dengan Teori Pemrosesan Informasi. Kreano, Jurnal Matematika Kreatif-Inovatif, 8(2), 182–190.

Purnomo, E. A., & Mawarsari, V. D. (2014). Peningkatan Kemampuan Pemecahan Masalah Melalui Model Pembelajaran IDEAL Problem Solving Berbasis Project Based Learning. Jurnal Karya Pendidikan Matematika, 1(1).

Rudhito, M. A., & Prasetyo, D. A. B. (2016). Pengembangan Soal Matematika Model TIMSS Untuk Mendukung Pembelajaran Matematika SMP Kelas VII Kurikulum 2013. Jurnal Cakrawala Pendidikan, 35(1), 88–97.

Sidauruk, E. E. V., & Ratu, N. (2018). Deskripsi Pemecahan Masalah Siswa Smp Dalam Menyelesaikan Soal TIMSS Konten Aljabar. Jurnal Karya Pendidikan Matematika, 5(2), 28–37.

Sugiyono. (2015). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.

Susanti, E. (2016). Pengembangan Soal Matematika Tipe TIMSS Menggunakan Konteks Rumah Adat Untuk Siswa Sekolah Menengah Pertama. Jurnal Pendidikan Matematika, 10(2), 1–22.

Susiana, E. (2010). IDEAL Problem Solving dalam Pembelajaran Matematika. Kreano, Jurnal Matematika Kreatif-Inovatif, 1(2), 73–82.

Ulya, H. (2016). Profil Kemampuan Pemecahan Masalah Siswa Bermotivasi Belajar Tinggi Berdasarkan IDEAL Problem Solving. Jurnal Konseling Gusjigang, 2(1), 90–96.

Widayanti, E., & Kolbi, I. A. (2018). Analisis Kesalahan Siswa Dalam Mengerjakan Soal TIMSS Untuk Kategori Penalaran. Jurnal Review Pembelajaran Matematika, 3(1), 76–85.

Yanti, A. P., & Syazali, M. (2016). Analisis Proses Berpikir Siswa dalam Memecahkan Masalah Matematika Berdasarkan Langkah-Langkah Bransford dan Stein Ditinjau dari Adversity Quotient. Al-Jabar: Jurnal Pendidikan Matematika, 7(1), 63–74.

Published
2020-04-09
How to Cite
Krissanti, M., & Yunianta, T. N. H. (2020). Profil pemecahan masalah siswa SMP dalam menyelesaikan soal TIMSS konten aljabar berdasarkan pemecahan masalah IDEAL. Math Didactic: Jurnal Pendidikan Matematika, 6(1), 12-24. https://doi.org/10.33654/math.v6i1.853
Section
Research
Abstract viewed = 473 times
PDF (Bahasa Indonesia) downloaded = 440 times